Senin, 11 September 2017

ISOMER STRUKTUR SENYAWA HIDROKARBON DAN SISTIM NOMENKLATUR

ISOMERI STRUKTUR SENYAWA HIDROKARBON DAN SISTIM NOMENKLATUR

Isomeri struktur senyawa Hidrokarbon dan Sistem Nomenklatur :
A.  Sistim Nomenklatur
 
Sistem nomenklatur tata nama yang sistematis dan di atur oleh IUPAC karena hanya digunakan untuk senyawa senyawa dengan rumus yang sederhana dan senyawa tertentu saja maka penggunaanya terbatas.
Tatanama IUPAC menggunakan sejumlah awalanakhiran, dan sisipan untuk mendeskripsikan jenis dan posisi gugus fungsi pada suatu senyawa.Pada kebanyakan senyawa, penamaan dapat dimulai dengan menentukan rantai hidrokarbon Ingold Prelog jika ambiguitas masih saja ada pada struktur rantai hidrokarbon induk. Nama dari rantai induk dimodifikasi dengan akhiran gugus fungsi yang memiliki prioritas tertinggi, sedangkan gugus fungsi sisanya diindikasikan dengan awalan yang dinomori dan disusun secara alfabetis.Dalam kebanyakan kasus, penamaan yang tidak mengikuti kaidah penamaan yang baik dan benar bisa menghasilkan nama yang masih bisa dimengerti strukturnya, tentu saja penamaan yang baik dan benar direkomendasikan untuk menghindari ambiguitas.
Sebagai contoh nama senyawa induk dan mengidentifikasi gugus fungsi pada molekul tersebut. Penomoran alkana induk dilakukan dengan menggunakan kaidah prioritas Cahn.
NH2CH2CH2OH
jika mengikuti aturan kaidah prioritas Cahn Ingold Prelog adalah 2-aminoetanol. Namun nama 2-hidroksietanaamina juga secara jelas merujuk pada senyawa yang sama.
Nama senyawa diatas dikonstruksi dengan cara sebagai berikut:
1.      Terdapat dua karbon pada rantai induk, maka diberi nama dasar "et"
2.      Karbon-karbon pada senyawa tersebut berikatan tunggal, maka diberi akhiran "an"
3.      Terdapat dua gugus fungsi pada senyawa tersebut, yakni alkohol (OH) dan amina (NH2). Alkohol memiliki nomor atom dan prioritas yang lebih tinggi dari amina, dan akhiran dari alkohol adalah "ol", maka akhiran majemuk yang terbentuk adalah "anol".
4.      Gugus amina tidak berada pada satu karbon yang sama dengan gugus OH (karbon nomor 1), namun melekat pada karbon nomor 2, oleh karena itu ia diidentifikasikan dengan awalan "2-amino".
5.      Setelah awalan, nama dasar, dan akhirannya digabung, kita mendapat "2-aminoetanol".
 Terdapat pula sistem penamaan lama untuk senyawa organik, dikenal sebagai tatanama umum, yang sering digunakan untuk menamakan senyawa yang sederhana maupun senyawa yang sangat kompleks sehingga nama IUPAC menjadi sangat panjang untuk digunakan.   

Unsur karbon
-ana (alkana) · -ena (alkena) · -ina (hidrokarbon tak jenuh) · -una (alkuna) · alk- (hidrokarbon jenuh) · ar- (aromatik)

Unsur oksigen
-al (aldehida) · -oat (ester) · -oat (asam karboksilat) · -ol (alkohol) · -on (keton) · -osa (gula)

Unsur nitrogen
-ina (alkaloid) · aza- (N menggantikan C)

Unsur sulfur
tio- (ekstra S)

Jumlah atom aksial
met- (1)  · et- (2)  · prop- (3)  · but- (4)  · (sisanya angka Yunani/Latin biasa)

Lainnya
-ase (enzim · -il (radikal) · nor- (tanpa residu)
          
 
Banyak senyawa organic yang tidak diketahui strukturnya, hal ini berlangsung pada abad ke 19. Pada masa itu nama-nama senyawa besifat ilustratif, yakni menyiratkan asal-usul sifatnya. Untuk memudahkan dalam mengenal dan mengidentifikasi senyawa-senyawa tersebut maka dikenal dengan munculnya nomenklatur. Nomenklatur atau Tata nama  (bahasa Inggris: nomenclature) berasal dari bahasa Latin : nomen untuk penamaan ataucalare bagi sebuah penyebutan dalam bahasa Yunani: ονοματοκλήτωρ yang berasal dari kata όνομα atau onoma yang sama berarti dengan bahasa Inggris kuno :nama dan bahasa Jerman kuno : namo adalah merujuk pada persyaratan, sistem prinsip-prinsip dasar, prosedur dan persyaratan yang berkaitan dengan penamaan yang dapat merupakan pembakuan kata atau frasa penugasan untuk objek tertentu. pada saat itu nama-nama senyawa bersifat ilustrasif, yakni menyiratkan asal usul atau sifatnya. Dibeberapa nama senyawa dinamai dengan nama kerabat para ahli misal asam barbinat yang mulanya dari nama wanita Barbara.  Asam karbosilat diperoleh dari penyulingan semut merah, asam ini dinamai asam forniat dari kata latin formica yang berarti semut nama nama ini disbut nama trivial atau nama lazim.
Bahkan sekarang ini ada nama nama trivial untuk senyawa baru, berikut namanya:
1. Kubana
2. prismana
3. baksetana
Dengan meledaknya nama nama senyawa baru maka nama nama kuno disistematiskan tata nama dengan menghubungkan nama senyawa dan strukturnya.      

B. Isomer Struktural
Dalam ilmu kimiaisomer ialah molekul-molekul dengan rumus kimia yang sama (dan sering dengan jenis ikatan yang sama), namun memiliki susunan atom yang berbeda (dapat diibaratkan sebagai sebuah anagram). Kebanyakan isomer memiliki sifat kimia yang mirip satu sama lain. Juga terdapat istilah isomer nuklir, yaitu inti-inti atom yang memiliki tingkat eksitasi yang berbeda.
Contoh sederhana dari suatu isomer adalah C3H8O. Terdapat 3 isomer dengan rumus kimia tersebut, yaitu 2 molekulalkohol dan sebuah molekul eter. Dua molekul alkohol yaitu 1-propanol (n-propil alkohol, I), dan 2-propanol (isopropil alkohol, II). Pada molekul I, atom oksigen terikat pada karbon ujung, sedangkan pada molekul II atom oksigen terikat pada karbon kedua (tengah). Kedua alkohol tersebut memiliki sifat kimia yang mirip. Sedangkan isomer ketiga, metil etil eter, memiliki perbedaan sifat yang signifikan terhadap dua molekul sebelumnya. Senyawa ini bukan sebuah alkohol, tetapi sebuah eter, di mana atom oksigen terikat pada dua atom karbon, bukan satu karbon dan satu hidrogen seperti halnya alkohol. Eter tidak memiliki gugus hidroksil.
Terdapat dua jenis isomer, yaitu isomer struktural dan stereoisomer. Isomer struktural adalah isomer yang berbeda dari susunan/urutan atom-atom terikat satu sama lain. Contoh yang disebutkan di atas termasuk kedalam isomer struktural. Walaupun komposisi jumlah atom sama persis, belum tentu molekul-molekul isomer struktural mempunyai sifat yang sama. Sebagai contoh, sifat kimia siklobutana berbeda dengan butena. Padahal keduanya mempunyai rumus kimia yang sama, yaitu C4H8.
Isomer struktural adalah senyawa dari rumus kimia yang sama yang memiliki struktur dan sifat yang berbeda didasarkan pada bagaimana konstituen atom mereka diurut. Sebagai contoh, ada dua isomer
struktural dengan sama rumus kimia C4H10, CH3CH2CH2CH3 butana yaitu normal dan metilpropana (CH3)2CHCH2CH3. Sangat menarik untuk dicatat butana yang normal mendidih pada -0.5 derajat Celsius, sedangkan metilpropana mendidih pada suhu 28 derajat Celcius. Karena jumlah atom bertambah, jumlah isomer meningkat. Ada tiga isomer struktural dengan rumus kimia C5H12, lima dengan rumus C6H14 dan sembilan dengan rumus C7H16.
Isomer struktural karbon tidak dibatasi hanya untuk karbon dan hidrogen, meskipun mereka adalah contoh paling terkenal dari isomer struktural. Di lemari obat rumah tangga orang dapat menemukan C3H8O, atau isopropil alkohol, kadang-kadang diidentifikasi sebagai “alkohol.” Rumus struktur adalah CH3CH (OH) CH3. Selain itu, ada n-propil alkohol, CH3CH2CH2 (OH) dan bahkan eter metiletil, CH3OCH2CH3, meskipun tak satu pun dari kedua senyawa ini kemungkinan akan ditemukan di rumah. Juga ada isomer struktural senyawa karbon yang mengandung atom lain.
Yang membuat kelimpahan bentuk seperti isomer yang mungkin adalah kemampuan atom dari beberapa unsur – terutama karbon – untuk bergabung satu sama lain. Hal ini disebabkan sifat dari ikatan antara atom. Atom karbon yang berdekatan bergabung dengan ikatan kovalen, ikatan di mana atom yang berpartisipasi berbagi elektron yang sama, daripada memindahkannya dari satu atom ke yang lain. Sebagai gambaran, dalam garam meja biasa, NaCl, atom natrium ikut serta memberikan lebih dari satu elektron yang tersedia untuk atom klor, dan dua atom tertarik gaya elektrostatis. Hal seperti ini ada antara atom karbon yang bergabung dalam etana, C2H6.
Isomer structural
Silikon dan boron memiliki kemampuan yang sama untuk mengikat satu sama lain tanpa transfer elektron. Isomer struktural silikon dan boron diilustrasikan dengan baik dalam silan – senyawa silikon dan hidrogen – dan boran – senyawa boron dan hidrogen. Senyawa karbon dan hidrogen mulai dengan molekul metana, CH4. Analog dengan hal ini, senyawa silikon dan hidrogen dimulai dengan silan, SiH4. Menariknya, senyawa boron dan hidrogen mulai berbeda dengan borana, BH3 – senyawa yang dikenal hanya dalam bentuk gas yang cepat dimerizes untuk membentuk B2H6.
Kemampuan untuk membentuk isomer struktural sangat meningkatkan jumlah senyawa yang mungkin dengan berbagai sifat hampir tak berujung. Dalam kasus karbon, isomer struktural memungkinkan senyawa kehidupan. Untuk silikon dan boron, berbagai besar senyawa memberi dunia ilmiah dan manufaktur sejumlah besar reagen. Salah satu aplikasi dari turunan silan dalam lapisan yang memungkinkan bahan-bahan biologis berbahaya harus terpasang ke struktur implan titanium. Adapun boran, mereka dapat digunakan dalam sintesis organik khusus, dalam sel bahan bakar yang eksotis, dan bahkan untuk bahan bakar peroketan.


Jenis-jenis isomer strukrur 
  • Isomer rantai
Isomer ini muncul karena kemungkinan percabangan rantai karbon. Sebagai contoh, ada dua isomer dari butana, C4H10. Dalam salah satu dari mereka, atom karbon terletak pada “rantai lurus” sedangkan yang lain rantai bercabang.

Isomer-isomer ini muncul karena adanya kemungkinan dari percabangan rantai karbon.
Contoh : 
 
C4H10 (butana), ada 2 isomernya yang pada salah satunya rantai karbon berada dalam dalam bentuk rantai panjang, dimana yang satunya berbentuk rantai karbon bercabang.
Antara butana dan isobutana (2 metil propana) yang lebih reaktif yaitu isobutana karena semakin banyak cabangnya semakin besar halangan steriknya.

 
  • Isomer posisi
Sebagai contoh, ada dua isomer struktural dengan rumus molekul C3H7Br. Dalam salah satu dari mereka atom bromin di ujung rantai, sedangkan yang lain itu melekat di tengah.
Jika Kita membuat model, tidak ada cara yang Kita bisa memutar satu molekul untuk mengubahnya menjadi yang lain. Kita harus memecahkan bromin di bagian akhir dan pasang kembali di tengah. Pada saat yang sama, Kita harus memindahkan hidrogen dari tengah sampai akhir. Contoh lain yang serupa terjadi pada alkohol seperti C4H9OH
Ini adalah hanya dua kemungkinan asalkan Kita menjaga rantai empat karbon, tetapi tidak ada alasan mengapa Kita harus melakukan itu. Kita dapat dengan mudah memiliki campuran rantai Isomer dan posisi isomer – Kita tidak terbatas pada satu atau yang lain.
Kita juga bisa mendapatkan isomer posisi pada cincin benzena. Pertimbangkan rumus molekul C7H7Cl. Ada empat isomer berbeda Kita bisa membuat tergantung pada posisi atom klorin. Dalam satu kasus itu melekat pada atom karbon samping kelompok, dan kemudian ada tiga kemungkinan posisi lain bisa memiliki sekitar ring – samping grup CH3, next-tapi-satu untuk kelompok CH3, atau sebaliknya kelompok CH3 .

Dalam isomer posisi , kerangka karbon dasar tetap tidak berubah, namun kelompok-kelompok penting yang berpindah-pindah pada kerangka itu.
Contoh :
 
Antara kiri dan kanan yang lebih stabil adalah kanan, karena semakin banyak ikatan hydrogen. Sedangkan yang kiri sedikit ikatan hydrogen yang menyebabkannya kurang stabil.

 
  • Isomer Fungsional
Dalam berbagai ini isomer struktural, isomer mengandung gugus fungsional yang berbeda – yaitu, mereka milik keluarga yang berbeda dari senyawa (seri homolog yang berbeda).
Pada variasi dari struktur isomer ini, isomer mengandung grup fungsional yang berbeda- yaitu isomer dari dua jenis kelompok molekul yang berbeda.

Contoh : etanol dan dimetil eter
 
Perbedaan rantai, posisi dan gugus fungsi inilah yang menyebabkan perbedaan sifat senyawa tersebut

Sebagai contoh, rumus molekul C3H6O dapat berupa propanal (aldehid) atau propanon (keton).
Ada kemungkinan lain juga untuk formula ini molekul yang sama – misalnya, Kita bisa memiliki ikatan karbon-karbon gkita (alkena) dan -OH (alkohol) dalam molekul yang sama.
Contoh lainnya digambarkan dengan rumus C3H6O2 molekul. Di antara beberapa isomer struktural ini asam propanoat (asam karboksilat) dan metil etanoat (ester).
 
C. Isomer Pada Alkana
 
Struktur alkana dapat berupa rantai lurus atau rantai bercabang. Alkana yang mengandung tiga atom karbon atau kurang tidak mempunyai isomer seperti CH4, C2H6 dan C3H8 karena hanya memiliki satu cara untuk menata atom-atom dalam struktur ikatannya sehingga memilki rumus molekul dan rumus struktur molekul sama. Perhatikan gambar di bawah ini:


Dalam senyawa alkana juga ada yang rumus molekulnya sama, tetapi rumus struktur molekulnya berbeda. Mulai dari alkana dengan rumus molekul C4H10mempunyai dua kemungkina struktur ikatan untuk menata atom-atom karbonnya seperti di bawah ini:

Untuk senyawa-senyawa tersebut disebut isomer. Oleh karena perbedaan hanya pada kerangka struktur maka isomernya disebut isomerkerangka.
Untuk pentana (C5H12) memiliki tiga kemungkinan struktur ikatan untuk menata atom-atom karbonnya yaitu:

Kita dapat menyimpulkan dari 2 contoh di atas bahwa semakin bertambah jumlah atom C pada rumus molekul suatu alkana maka semakin banyak isomernya seperti yang tertera ditabel bawah ini:
Jumlah atom C
C4
C5
C6
C7
C8
C9
C10
Rumus molekul
C4H10
C5H12
C6H14
C7H16
C8H18
C9H20
C10H22
Jumlah isomer
2
3
5
9
18
35
75
a.      Isomer dari butane C4H10
b.      Isomer dari heksana C6H14
 

7 komentar:

  1. Hai krisna, saya ingin menambahkan sedikit tentang penggolongan isomer struktur sebagai berikut:
    1. Isomer kerangka

    Isomeri rangka adalah isomeri yang terjadi karena perbedaan rangkanya, biasanya terjadi antara senyawa rantai lurus dengan senyawa yang memiliki cabang, bisa pula antar senyawa yang memiliki cabang, namun berbeda pada posisi dan jumlah cabang.

    Contoh : butana memiliki dua isomer yaitu, normal butana (n-butana) dan isobutana (2-metilpropana)

    2. Isomeri Posisi

    Isomeri posisi adalah isomeri yang terjadi karena perbedaan posisi ikatan rangkap. Isomeri ini hanya terjadi pada senyawa hidrokarbon tak jenuh (alkena dan alkuna).

    Contoh : butena memilki dua isomer posisi yaitu, 1-butena dan 2-butena

    3. Isomeri Geometri

    Isomeri geometri adalah isomeri yang disebabkan oleh perbedaan penataan ruang atom-atom dalam molekul. Isomeri ini berbeda dengan isomeri sebelumnya, karena isomeri jenis ini hanya terjadi pada senyawa yang memiliki ikatan yang kaku dengan dua sisi yang berlainan. Isomeri geometri hanya terjadi pada senyawa alkena.

    Molekul di alam tidaklah diam atau statis, namun melakukan banyak gerakan, diantara gerakan yang paling umum adalah translasi (gerak lurus), rotasi (memutar), dan vibrasi (bergetar). Salah satu gerak yang akan kita tinjau adalah gerak rotasi. Pada senyawa alkana, dimana ikatan antar karbon adalah ikatan tunggal, maka molekul akan dapat berputar pada sumbunya dengan putaran yang bebas. Perhatikan, kita ambil contoh senyawa butana (CH3-CH2-CH2-CH3):

    Kedua struktur diatas adalah struktur dari senyawa yang sama, meskipun gugus –CH3 sepertinya berlainan tempat, namun karena molekul dapat berputar, maka struktur tersebut dapat kembali ke struktur semula, dan ini dapat terjadi dalam waktu yang sangat cepat.

    Adapun untuk senyawa yang mengandung ikatan rangkap (seperti alkena), ikatan rangkap tersebut akan bersifat kaku sehingga tidak dapat berputar. Nah, karena ikatan rangkap ini tidak dapat berputar, maka ketika ada dua senyawa yang memiliki struktur berbeda, itu artinya kedua senyawa tersebut memang merupakan dua senyawa yang berbeda sifat. Dengan kata lain, dua senyawa tersebut adalah isomer satu sama lain. Pasangan senyawa pada contoh nomor 2 diatas masuk dalam kategori isomeri geometri atau nama lainnya isomeri cis-trans. Jadi, isomeri geometri atau isomeri cis-trans terjadi karena gugus-gugus berada pada satu sisi atau pada sisi yang berlawanan terhadap letak ikatan rangkap dua. Dalam hal ini, ikatan rangkap membentuk semacam jembatan yang memiliki dua cabang. Syarat terjadinya isomeri geometri adalah harus adanya dua gugus yang berbeda yang terikat pada atom C yang sama. Isomer cis terjadi jika gugus yang sama terletak sesisi (melewati jembatan), sedangkan isomer trans terjadi jika gugus yang sama terletak berseberangan.

    Contoh : 2-butena (CH3–CH=CH–CH3) memiliki dua isomer geometri,

    BalasHapus
    Balasan
    1. terimakasih sudah menambahkan enda,sangat membantu. tambahan dari anda sangat bagus dan bermanfaat.

      Hapus
  2. mengapa isobutana lebih reaktif dari butana?

    BalasHapus
    Balasan
    1. N-butana dan isobutana adalah dua senyawa yang termasuk golongan alkana. Keduanya mempunyai rumus molekul sama tetapi strukturnya berbeda. n-butana mempunyai rantai lurus sedang isobutana rantainya bercabang.



      Dengan struktur rantai lurus, n-butana mempunyai titik didih lebih tinggi daripada isobutana. Hal ini disebabkan:
      luas bidang kontak antarmolekul n-butana yang memanjang cenderung lebih besar daripada bidang kontak isobutana yang mengumpulgaya London antarmolekul n-butana lebih kuat
      Baik n-butana maupun isobutana mempunyai rumus molekul yang sama, yaitu C4H10, sehingga mempunyai massa molekul relatif (Mr) yang sama pula.
      Butana, juga disebut n-butana, adalah alkana rantai lurus dengan empat atom karbon CH3CH2CH2CH3. Butana juga digunakan sebagai istilah kolektif untuk n-butana dan satu-satunya isomernya, isobutana (disebut juga metilpropana), CH(CH3)3. Butana sangat mudah terbakar, tidak berwarna, dan merupakan gas yang mudah dicairkan. Nama butana diturunkan dari nama asam butirat. Butana, juga disebut n-butana, adalah alkana rantai lurus dengan empat atom karbon CH3CH2CH2CH3. Butana juga digunakan sebagai istilah kolektif untuk n-butana dan satu-satunya isomernya, isobutana (disebut juga metilpropana), CH(CH3)3. Butana sangat mudah terbakar, tidak berwarna, dan merupakan gas yang mudah dicairkan. Nama butana diturunkan dari nama asam butirat.

      Hapus
  3. saya ingin bertanya mengenai blog yang anda posting. menurut anda bagaimana cara kita menentukan suatu senyawa itu berisomer funsional dengan senyawa lain?

    BalasHapus
  4. Dapatkah anda jelaskan mengenai hal ini .Yang membuat kelimpahan bentuk seperti isomer yang mungkin adalah kemampuan atom dari beberapa unsur – terutama karbon – untuk bergabung satu sama lain?

    BalasHapus
  5. In this fashion my pal Wesley Virgin's biography starts in this shocking and controversial VIDEO.

    You see, Wesley was in the army-and shortly after leaving-he discovered hidden, "SELF MIND CONTROL" tactics that the CIA and others used to get anything they want.

    THESE are the exact same SECRETS lots of celebrities (notably those who "come out of nowhere") and the greatest business people used to become wealthy and successful.

    You probably know how you utilize only 10% of your brain.

    That's really because most of your brainpower is UNCONSCIOUS.

    Maybe this expression has even occurred INSIDE your own head... as it did in my good friend Wesley Virgin's head 7 years ago, while riding a non-registered, beat-up trash bucket of a car with a suspended driver's license and on his debit card.

    "I'm absolutely frustrated with going through life paycheck to paycheck! When will I get my big break?"

    You've been a part of those those conversations, right?

    Your very own success story is going to be written. You just need to take a leap of faith in YOURSELF.

    CLICK HERE TO LEARN WESLEY'S SECRETS

    BalasHapus

TUGAS TERSTRUKTUR III & IV KIMIA ORGANIK 1

TUGAS TERSTRUKUR III & IV  1 1.      Megapa reaksi bersaing antara subtitusi dan eliminasi bisa terjadi? Jelaskan!    ...