Minggu, 24 September 2017

STEREOKIMIA

STEREOKIMIA
             Stereokimia adalah susunan ruang dari atom dan gugus fungsi dalam molekul umumnya
 molekul organik dalam obyek tiga dimensi yang merupakan hasil hibridisasi dan ikatan secara geometri dari atom dalam molekul. Artinya bagaimana atom-atom dalam sebuah molekul diatur dalam ruang satu terhadap ruang yang lainnya.
Perlu diketahui bahwa stereokimia ini sangatlah penting. bahkan karena seterokimia ini, sebuah struktur yang memiliki rumus molekul sama hanya karena susunannya berbeda akan mengakibatkan fungsi yang berbeda pula, hal ini sering terjadi di dunia kesehatan. pada produk hasil sintesis. produk berupa rasemat, yaitu dua produk isomer yang berlawanan strukturnya. 
Dibawah ini dapat kita lihat struktur antara kanji dan selulosa.

Selulosa (sumber :wikipedia)



Kanji ( sumber: wikipedia)

Jika dibandingkan maka kedua molekul tersebut sama persis formula kimianya, namun faktanya sangat berbeda antara kanji dan selulosa. baik dari segi fungsi maupun fisiknya. ya, itulah isomer.
tapi bukan isomer biasa, ini ialah stereoisomer dimana isomer tak berbeda pada susunannya, tapi yang berbeda ialah bentuk 3 dimensinya. bisa dilihat pada selulosa, ikatan pada atom O penghubung letaknya equatorial keduanya, sedangkan pada kanji ikatan pada atom O letaknya equatorial dan axial.
Axial ialah ikatan yang letaknya vertikal, atas atau bawah sedangkan equatorial yang terletak horizontal yaitu pada kanan atau kiri.
         Agar dapat berinteraksi dengan reseptor dan menimbulkan respon biologis, molekul obat harus mempunyai struktur dengan derajad kespesifikan yang tinggi. Interaksi obat-reseptor dipengaruhi oleh distribusi muatan elektronik dalam obat dan reseptor serta bentuk konformasi obat dan reseptor sedangkan aktivitas obat tergantung pada stereokimia molekul obat, jarak antar atom atau gugus dan distribusi elektronik dan konfigurasi molekul. Perbedaan aktivitas farmakologis dari stereoisomer disebabkan oleh perbedaan dalam distribusi isomer dalam tubuh, perbedaan dalam sifat-sifat interaksi obat-reseptor dan perbedaan dalam adsorpsi isomer-isomer pada permukaan reseptor.
 
Ada beberapa pendapat mengenai sterokimia menurut para ahli,yaitu:
  • Jean-Baptiste Biot (1774-1862)
Sejarah stereokimia dimulai pada 1815 ketika Biot melakukan eksperimen menggunakan "cahaya terpolarisasi." Lampu biasa terdiri dari cahaya bergetar. Namun, ketika lampu biasa disaring, sebuah cahaya tunngal terpolarisasi diperoleh. Biot melewatkan sinar terpolarisasi melalui berbagai larutan dan mencatat bahwa larutan tertentu seperti gula dapat memutar cahaya terpolarisasi. Dia juga menemukan tingkat rotasi adalah ukuran langsung dari konsentrasi dari larutan.
  •  Louis Pasteur (1822-1895)
Pada tahun 1848 Pasteur memisahkan zat optik tidak aktif (asam tartarat) menjadi dua komponen optik aktif. Setiap komponen optik aktif memiliki sifat identik dengan asam tartarat (kepadatan, titik lebur, kelarutan, dll) akan tetapi salah satu komponen diputar cahaya terpolarisasi searah jarum jam (+) sedangkan komponen lain diputar cahaya terpolarisasi dengan jumlah yang sama berlawanan (-). Pasteur membuat proposal yang masih berdiri sebagai dasar stereokimia: Molekul-molekul kembar asam tartarat adalah bayangan cermin satu sama lain!
Penelitian tambahan oleh Pasteur mengungkapkan bahwa salah satu komponen dari asam tartrat dapat dimanfaatkan untuk gizi oleh mikro-organisme tetapi yang lain tidak bisa. Berdasarkan percobaan ini, Pasteur menyimpulkan bahwa sifat biologis zat kimia tidak hanya tergantung pada sifat dari atom yang terdiri dari molekul tetapi juga pada cara di mana atom-atom ini tertata dalam ruang.

  • Jacobus van't Hoff (1852-1911)
Pada tahun 1874 sebagai mahasiswa di Universitas Utrecht, van't Hoff mengusulkan karbon tetrahedral. Proposal didasarkan pada bukti dari jumlah isomer: Konversi CH4 menjadi CH3Y (Y = Cl, Br, F, I, OH, dll) menghasilkan hanya satu struktur. Ketika CH3Y diubah menjadi CH2YZ (CH2Cl2, CH2ClBr, CH2BrF, dll), hanya satu struktur yang pernah diamati. van't Hoff menyadari bahwa keempat hidrogen dalam CH4 harus setara (lingkungan yang sama) dan geometris persegi itu dikesampingkan karena akan membentuk dua struktur sebagai berikut

Untuk CH4 tetrahedral, empat hidrogen setara berada di sudut dengan sudut HCH dari 109,5 °

Karbon tetrahedral tidak hanya bekerja sama dengan tidak adanya isomer CH3Y dan CH2YZ, tetapi juga meramalkan adanya isomer bayangan cermin. Ketika karbon membuat empat ikatan tunggal dengan empat kelompok berbeda seperti CHFClBr, nonsuperimposable cermin-gambar molekul (enantiomer) ada:


Ini enantiomer menampilkan sifat fisik hampir sama kecuali untuk arah rotasi dari cahaya terpolarisasi. Sebuah campuran yang sama dari si kembar cermin gambar secara optik tidak aktif sejak rotasi membatalkan satu sama lain. Sebuah karbon dengan empat kelompok yang berbeda dikatakan memiliki "pusat kiral." Contoh molekul yang mengandung satu atau lebih pusat kiral ditunjukkan dengan tanda bintang merah. Meskipun atom hidrogen tidak ditampilkan, menganggap mereka hadir untuk memberikan karbon empat obligasi.

Sebagai jumlah pusat kiral (C *) meningkat, begitu juga jumlah stereoisomer (struktur yang sama tetapi berbeda dalam orientasi ruang). Jumlah maksimum stereoisomer yang mungkin adalah 2x di mana x adalah jumlah pusat kiral per molekul.
  • Emil Fisher (1852-1919)
Pada tahun 1894 Fisher dilakukan salah satu prestasi paling luar biasa dalam sejarah kimia: Dia mengidentifikasi 16 stereoisomer untuk aldohexoses (C6H12O6), anggota yang paling menonjol yang D-glukosa.
Fisher menggunakan representasi silang (sekarang disebut Fisher proyeksi) untuk membedakan bentuk tiga dimensi. Proyeksi Fisher ditampilkan untuk D dan Lglucose (D / L inovasi lain Fisher).

  • Vladmir Prelog (1906-1998)
Prelog dianugerahi Hadiah Nobel dalam bidang kimia (1975) untuk penelitian stereokimia alkaloid, antibiotik, enzim, dan senyawa alam lainnya. Dia merancang perbedaan stereokimia digunakan saat ini untuk konfigurasi gambar cermin: R / S sebutan untuk enantiomer dan Z / E untuk isomer geometris.
Pada stereokimia terdapat tiga aspek penting , diantaranya sebagai berikut :
1.Konformasi molekul: Berkaitan dengan bentuk molekul dan bagaimana bentuk molekul itu diubah akibat adanya putaran bebas disepanjang ikatan C-C tunggal.
2.Konfigurasi berkaitan dengan Kiralitas molekul: Bagaimana penataan atom-atom disekitar atom karbon yang mengakibatkan terjadinya isomer.
3.Isomer Geometrik : Terjadi karena ketegaran (rigit) dalam molekul yang mengakibatkan adanya isomer .

A. Isomer Geometri dalam Alkena dan Senyawa Siklik
        Isomer adalah senyawa-senyawa karbon yang memiliki rumus molekul sama tetapi rumus strukturnya berbeda. Pada senyawa hidrokarbon, rumus kimia menunjukkan jumlah atom karbon dan setiap unsur yang terdapat dalam satu molekul senyawa. Rumus kimia senyawa propana adalah C3H6, rumus kimia ini menunjukkan bahwa setiap molekul propana terdiri atas tiga atom karbon dan enam atom hidrogen. Rumus struktur molekul adalah rumus kimia yang menunjukkan cara atom-atom diikatkan antara satu sama lain dengan ikatan kovalen dalam struktur molekul senyawa tersebut.

Keisomeran senyawa hidrokarbon adalah suatu fenomena, karena dua atau lebih senyawa hidrokarbon memiliki rumus kimia yang sama, tetapi memiliki struktur molekul yang berbeda. Struktur-struktur molekul yang berbeda tetapi rumus kimianya sama ini disebut isomer. Terdapat 4 jenis isomer, yaitu isomer rangka, isomer posisi, isomer fungsi, dan isomer geometri. Isomer rangka dan isomer posisi sering disebut isomer struktur.
Isomer memiliki dua Kelas Utama yaitu  Konstitusional isomer dan stereoisomer.
·         Konstitusional isomer
konstitusional isomer merupakan  berbeda pada cara atom tersebut terhubung satu sama lain. Sifatnya yaitu:
a)      Nama IUPAC yang berbeda
b)      Gugus fungsi bisa sama tau beda
c)      Sifat fisik yang berbeda, sehingga bisa dipisahkan dengan pemisahan yang didasarkan perbedaan sifat fisik seperti distilasi
d)      Sifat kimia yang berbeda. sehingga direaksikan akan menghasilkan produk yang berbeda pula
·         Stereoisomer hanya berbeda pada cara atom berorientasi pada ruang. Stereoisomer memiliki nama IUPAC yang identik(kecuali kata depan seperti trans atau cis). Memiliki gugus fungsi yang sama. Susunan dari tiga dimensi disebut konfigurasi. Stereoisomer hanya berbeda dalam konfigurasinya.
Isomer geometri adalah isomer yang terjadi pada dua molekul yang mempunyai rumus molekul sama, tetapi berbeda dalam penataan atom atom dalam ruang. Selalu ingat bahwa sebenarnya molekul molekul itu ada pada ruang tiga dimensi yang atom atomnya berikatan dengan penataan sedemikian rupa. Isomer geometri terjadi karena ketegaran (rigidity) dalam molekul dan hanya dijumpai dalam dua kelompok senyawa yaitu alkena dan senyawa siklik.
        Isomeri geometrik  terjadi karena rotasi ntidak bebas mengelilingi suatu ikatan rangkap . Isomer geometri dalam Alkena (Cis dan Trans). Di akibatkan oleh ketegaran dalam molekul. Dijumpai dalam dua kelas senyawa: alkena dan senyawa siklik. Senyawa yang mempunyai ikatan rangkap tak dapat berputar dengan ikatan rangkap sebagai sumbunya, tanpa mematahkan ikatan pi nya. Karena kekakuan ikatan pi, gugus-gugus yang terikat pada ikatan pi terletak tetap dalam ruang relatif satu sama lain. Syarat isomer geometri dalam alkena, yaitu tiap atom karbon yang terlibat dalam ikatan pi mengikat dua gugus yang berlainan, misalnya H dan Cl. Jika salah satu atom karbon berikatan rangkap itu mempunyai dua gugus identik, misalnya dua atom H atau dua gugus CH3,maka tak mungkin terjadi isomrotaeri geometri. 
     Rotasi tidak bebas dalam senyawa bebas atom atom yang tergabung dalam suatu cincin tidak bebas berotasi mengelilingi ikatan ikatan sigma (dari) cincin itu. Rotasi mengelilingi ikatan-ikatan sigma cincin akan memutus agar atom-atom atau gugus gugus yang terikat, melewati pusat cincin itu. Tetapi gaya tolak Van der Walls menghalangi terjadinya gerakan ini, terkecuali jika cincin berdiri dari sepuluh atom karbon atau lebih. Dalam senyawa organik cincin yang lebih lazim ialah cincin lima atau enam anggota. Oleh karena itu pembahasan dipusatkan pada cincin dengan nam atom karbon atau kurang.  Berbeda halnya dengan gugus atau atom yang terikat oleh ikatan rangkap dimana ada ikatan sigma dan pi dalam molekul (sp2). Gugus atau atom ini tidak dapat berotasi tanpa mematahkan ikatan pi –nya terlebih dahulu. Sehingga ada sifat ketegaran adalam molekul yang menyebabkan jika letak atom atau gugusnya berbeda, maka sifat senyawa tersebut berbeda pula. Artinya lagi kedua senyawa tersebut adalah berbeda.
Jika suatu gugus atau atom terikat oleh ikatan sigma saja (sp3, umumnya pada senyawa yang berikatan tunggal), maka gugus atau atom yang terikat tersebut dapat berputar sedemikian rupa sehingga bentuk molekulnya akan selalu sama.
Contoh :
Berbeda halnya dengan gugus atau atom yang terikat oleh ikatan rangkap dimana ada ikatan sigma dan pi dalam molekul (sp2). Gugus atau atom ini tidak dapat berotasi tanpa mematahkan ikatan pi –nya terlebih dahulu. Sehingga ada sifat ketegaran adalam molekul yang menyebabkan jika letak atom atau gugusnya berbeda, maka sifat senyawa tersebut berbeda pula. Artinya lagi kedua senyawa tersebut adalah berbeda.
Contoh :
Kedua senyawa disamping adalah berbeda dimana pada senyawa pertama letak atom Cl-nya sesisi sedangkan pada senyawa kedua letak atom Cl-nya berbeda sisi. Senyawa pertama tidak mudah diubah menjadi senyawa kedua, begitu juga sebaliknya karena ikatan rangkap antara atom karbonnya berisifat tegar.
Jika dalam senyawa, dua gugus atau atom yang sama terletak pada satu sisi ikatan pi, maka disebut dengan cis, dan jika letaknya berlwanan disebut dengan trans.
Perbedaan kedua senyawa dapat dibuktikan dari perbedaan sifat fisikanya seperti titik didih kedua senyawa yang berbeda. Senyawa cis-1,2-dikloroetena memiliki titik didh 60 derajat celsius sedangkan senyawa trans-1,2-dikloroetena memiliki titik didih 48 derajat celsius. kedua senyawa tersebut tidak bisa dikatakan sebagai  isomer structural karena ikatan atom atom dan lokasi ikatan rangkap pada kedua senyawa tersebut adalah sama sehingga bukan merupakan isomer struktural. Pasangan senyawa diatas secara umum termasuk ke dalam kelompok stereoisomer, yaitu senyawa yang rumus strukturnya sama tetapi yang berbeda hanyalah penataan atom atom adalam ruang. Secara lebih spesisfik, kedua pasangan senyawa diatas disebut berisomer geometri (cis – trans). Hal yang perlu diingat bahwa “Senyawa alkena yang berisomer geometri bukanlah termasuk berisomer struktural, karena secara struktural ( letak atom atom dan posisi ikatan rangakap) adalah sama”.
Syarat suatu senyawa yang memiliki isomer geometri adalah tiap atom akrbon yang berikatan pi (rangkap) harus mengikat gugus – gugus yang berlainan.
Contoh : 2 – pentena

Pada senyawa pentena diatas, kedua atom karbon yang berikatan rangkap mengikat gugus gugus yang berlainan. Atom karbon pertama mengikat atom H dan gugus CH3, sedangkan atom kedua mengikat H dan gugus – CH2CH3. Senyawa pentena diatas disebut memiliki isomer geometri.
Jika gugus atau atom yang diikat oleh karbon yang berikatan rangkap ada yang sama, walaupun mempunyai ikatan rangkap yang tegar dan tidak dapat berotasi, tetapi senyawa tersebut tidak berisomer geometri.
Perhatikan senyawa dibawah

Karbon pertama yang berikatan rangkap sama sama mengikat atom H, sehingga bentuk pertama dan kedua senyawa diatas adalah sama walaupun penggambaran strukturnya pada bidang datar terlihat berbeda. Ingatlah bahwa molekul sebenarnya ada pada ruang tiga dimensi.
Isomer geometri pada hidrokarbon siklik
  • Keterbatasan perputaran atom – atom yang terikat pada masing – masing atom C.
  • Rintangan perputaran atom – atom tidak sebesar rintangan atom – atom yang terikat pada atom C ikatan rangkap, tetapi lebih besar dari pada rintangan pada hidrokarbon rantai terbuka karena pengaruh regangan sudut.
  • Ikatan s pada hibridisasi sp3 mempunyai sudut 109,5o, beberapa ikatan siklik mempunyai sudut ikatan tidak demikian.
  • Besarnya rintangan akibat regangan sebanding selisih sudut ikatan dengan 109, 5o.
  • Siklopropana mempunyai sudut ikatan 60, siklopentana 108. 
  • Molekul siklik besar hampir tidak ada rintangan karena regangan 
  • Sikloheksana membentuk konformasi kursi supaya sudut ikatan mendekati 109,5o.
  • Dalam sikloheksana dikenal subtituen:
            Aksial à ikatan pada salah satu hidrogen terletak dalam bidang cincin
            Ekuatorial à ikatan ke hidrogen lain yang tegak lurus sumbu

B. Konformasi dan Kiralitas Senyawa Rantai Terbuka 
  •   Konformasi senyawa rantai terbuka
Konformasi  Molekul : bentuk molekul dan bagaimana bentuk ini dapat berubah. Dalam senyawa rantai terbuka, gugus-gugus yang terikat oleh ikatan sigma dapat berotasi mengelilingi ikatan itu. Oleh karena itu atom-atom dalam suatu molekul rantai terbuka dapat memiliki tak terhingga banyak posisi di dalam ruang relatif satu terhadap yang lain. Memang etana merupakan sebuah molekul kecil, tetapi etana dapat memiliki penataan dalam ruang secara berlain-lainan, inilah yang disebut konformasi. 
Dalam senyawa rantai terbuka gugus gugus yang terikat oleh ikatan sigma dapat berotasi mengelilingi ikatan tersebut. Oleh karena itu atom – atom dalam suatu molekul – molekul terbuka dapat memiliki tak terhingga banyak posisi di dalam ruang relatif satu terhadap yang lain. Memang etana sebuah molekul kecil, tetapi etana dapat memiliki penataan dalam ruang secara berlain – lainan, penataan tersebut disebut konformasi. Untuk mengemukakan konformasi digunakan tiga jenis rumus : rumus dimensional, rumus bola dan pasak dan proyeksi Newman. Suatu rumus bola dan pasak dan rumus dimensional adalah representasi 3dimensi dari model molekul suatu senyawa. Suatu proyeksi Newman adalah pandangan ujung ke ujung dari dua atom karbon saja dalam molekul itu. 
Ikatan yang menghubungkan kedua atom karbon ini tersembunyi. Ketiga ikatan dari karbon depan tampak menuju ke pusat proyeksi, dan ketiga ikatan dari karbon belakang hanya tampak sebagian.
Proyeksi Newman dapat digambar untuk molekul dengan dua atom karbon atau lebih. Karena pada tiap kali hanya dua atom karbon dapat ditunjukan dalam proyeksi itu, maka lebih dari satu  proyeksi newman dapat digambar untuk sebuah molekul. Suatu molekul dapat memiliki beberakonformasi atau konformasi yang berbedabeda karena disebabkan adanya rotasi mengelilingi ikatan sigma. Konformasi yang berbeda beda itu disebut konformer (dari kata “conformational isomers”)
Memang etana merupakan sebuah molekul kecil, tetapi etana dapat memiliki penataan dalam ruang secara berlain-lainan.
Untuk menggambarkan konformasi, digunakan tiga jenis rumus yaitu :
·         Rumus dimensional
·         Rumus bola-dan-pasak
·         Proyeksi Newman 
  • Kiralitas senyawa rantai terbuka
Molekul kiral adalah molekul yang mempunyai bayangan cermin tidak superimposabel (tidak dapat bertumpukan). Yang menyebabkan adanya kiralitas adalah adanya senyawa karbon yang tidak simetris. Atom C kiral adalah atom karbon yang mempunyai empat substituen yang berbeda. 
Istilah kiral berasal dari kata Yunani χειρ (kheir) yang berarti tangan. Istilah kiral secara umum digunakan untuk menggambarkan suatu objek yang tidak dapat bertumpukan secara pas pada bayangannya. Akiral (tidak kiral) adalah benda yang identik dengan bayangan cermin. Untuk mempelajari kiralitas, dapat menggunakan tangan manusia sebagai perumpaaan. Perhatikan contoh kiralitas asam amino berikut ini. 
Molekul kiral yang saling mempunyai bayangan cermin satu sama lain disebut dengan enantiomer atau isomer optik.

Kiralitas adalah suatu keadaan yang menyebabkan dua molekul dengan struktur yang sama tetapi berbeda susunan ruang dan konfigurasinya. Atom yang menjadi pusat kiralitas dikenal dengan istilah atom kiral. Atom kiral adalah atom yang mengikat gugus yang semuanya berbeda. Bila dalam suatu molekul terdapat satu pusat kiral maka akan terdapat dua stereoisomer dari senyawa tersebut yang dikenal dengan istilah enantiomer.
a.      Sepasang enantiomer merupakan bayangan cermin satu terhadap yang lainnya.
b.      Kedua enantiomer tidak bisa ditumpangtindihkan setelah dilakukan operasi simetri apapun.
Bila dalam satu molekul terdapat lebih dari satu pusat kiral maka akan terdapat lebih dari satu pasang enantiomer à diastereoisomer/diastereomer


 

9 komentar:

  1. Apakah rantai terbuka akan memiliki titik didih yang lebih tinggi jika dibandingkan dengan rantai tertutup?

    BalasHapus
    Balasan
    1. Titik Didih suatu zat cair dipengaruhi oleh tekanan udara, artinya makin besar tekanan udara makin besar pula titik didih zat cair tersebut. Pada tekanan dan temperatur udara standar (76 cmHg, 25ºC) titik didih air sebesar 100ºC. Artinya pelarut murni akan mendidih bila tekanan uap jenuh pada permukaan cairan sama dengan tekanan udara luar. Pada sistem terbuka, tekanan udara luar adalah 760 mmHg (tekanan udara pada permukaan larutan) dan suhu pada tekanan udara luar 760 mmHg disebut titik didih normal. Titik didih suatu cairan adalah suhu pada saat tekanan uap jenuh cairan itu sama dengan tekanan luar (tekanan yang diberikan pada permukaan cairan). Dari definisi ini kita ketahui bahwa titik didih cairan bergantung pada tekanan udara pada permukaan cairan. Itulah sebabnya, titik didih air di gunung berbeda dengan di pantai. Pada saat tekanan uap sama dengan tekanan udara luar maka gelembung-gelembung uap dalam cairan bergerak ke permukaan dan masuk fase gas. Titik didih dapat digunakan untuk memperkirakan secara tak langsung berapa kuatnya daya tarik antar molekul cairan. Cairan yang memiliki gaya tarik antar molekul kuat, akan memiliki titik didih yang tingi, begitu juga sebaliknya. Cairan yang gaya tarik antar molekulnya kuat, titik didihnya tinggi dan sebaliknya bila gaya tariknya lemah maka titik didihnya rendah. Ketergantungan titik didih pada gaya tarik antar molekul terlihat dimana titik didih beberapa senyawa halogen dari unsur – unsur golongan IVA, VA , VIA , dan VII A, dibandingkan. Kita lihat senyawa pada golongan IV A terlebih dahulu karena bentuknya yang ideal , yaitu ukuran atom yang naik dari atas ke bawah.
      Sifat periodik unsur titik didih dan kelogaman :
      · Satu periode : Dari kiri ke kanan makin bertambah puncaknya pada golongan IV A kemudian menurun drastis sampai golongan VIII A
      · Satu golongan : Golongan I A sampai IV A dari atas ke bawah makin rendah titik didih dan tititk lelehnya Golongan V A sampai VIII A dari atas ke bawah titik didih dan titik leleh makin tinggi.

      Hapus
  2. Tolong jelaskan sedikit tentang isomer struktural

    BalasHapus
    Balasan
    1. Isomer struktural (structural isomers) atau dikenal sebagai isomer konstitusional, adalah sebutan untuk jenis isomer yang berbeda dalam struktur dasar atau jenis ikatan-ligan yang tekait pada logam pusat dan melalui atom. Beberapa jenis isomerisme struktural (isomerisme ionisasi, isomerisme koordinasi, dan isomerisme tautan). Isomer Struktural Kata Kunci: isomer struktural Ditulis oleh Jim Clark pada 23-09-2004 Halaman ini menjelaskan tentang isomer struktur, dan berbagai contoh yang dapat mengakibatkan terjadinya isomer struktur. Apa yang dimaksud dengan struktur isomer? Arti isomer Isomer adalah molekul yang memiliki formula molekul yang sama tetapi memiliki pengaturan yang berbeda pada bentuk 3D. Tidak termasuk pengaturan berbeda yang diakibatkan rotasi molekul secara keseluruhan ataupun rotasi pada ikatan tertentu (ikatan tunggal). Sebagai contoh, keduanya adalah molekul yang sama. Dan keduanya bukan isomer. Keduanya merupakan butan. Isomer juga tidak terjadi pada rotasi di ikatan ikatan tunggal. Jika anda memiliki sebuah model molekul didepan mata anda, anda harus mempretelinya dan menyusung ulang kembali untuk menghasilkan isomer dari molekul tersebut. Pada salah satunya rantai karbon berada dalam dalam bentuk rantai panjang, dimana yang satunya berbentuk rantai karbon bercabang. Hati-hati untuk tidak menggambar isomer yang salah yang hanya merupakan rotasi sederhana dari molekul awal. Sebagai contoh, struktur dibawah ini merupakan versi lain dari rantai panjang butan yang diputar apa daerah tengah dari rantai karbon. Anda dapat melihatnya dengan jelas pada Pada saat yang sama anda harus memindahkan hidrogen dari tengah ke ujung. Contoh lain terjadi pada alkohol, seperti pada C4H9OH Hanya kedua isomer ini yang bisa anda dapatkan dari rantai dengan empat buah karbon bilamana anda tidak mengubah rantai karbon itu sendiri. Anda boleh, mengubahnya dan menghasilkan 2 buah isomer lagi. Anda juga bisa mendapatkan isomer posisi dari rantai benzen. Contoh padamodel dibawah ini. Ini merupakan contoh yang sebelumnya telah kita gunakan diatas. Pentane, C5H12, mempunyai tiga rantai isomer. Jika anda berpikir anda bisa menemukan yang lain, maka yang anda temukan hanyalah molekul yang sama yang diputar. Jika anda masih meragukannya gunakanlah sebuah model. Isomer posisi formula molekul C7H8Cl. Ada empat isomer berbeda yang bisa anda buat tergantung pada posisi dari atom klorin. Pada sebuah kasus terikat pada atom dari karbon yang berikatan dengan cincin, dan ada tiga buah lagi kemungkinan saat berikatan dengan cincin karbon. Isomer Dari Wikipedia, ensiklopedia bebas Artikel ini adalah tentang konsep kimia. Untuk "Isomer" dari inti atom, lihat isomer nuklir . Dalam kimia , isomer (dari ἰσομερής Yunani, isomerès; ISO = "sama", méros = "bagian") adalah senyawa yang sama dengan rumus struktural . [1] molekul tetapi berbeda rumus Isomer tidak perlu berbagi sifat yang mirip, kecuali mereka juga memiliki sama kelompok fungsional . Ada kelas yang berbeda dari isomer, seperti stereoisomer, enantiomer, isomer geometri, dll (lihat grafik di bawah). Ada dua bentuk utama dari isomer:isomer struktural dan stereoisomerism (isomer spasial).

      Hapus
  3. Saya kurang mengerti tentang postingan anda yaitu enantiomer tidak bisa ditumpangtindihkan setelah dilakukan operasi simetri apapun tolong dijelaskan?

    BalasHapus
  4. Apa yang dimaksud konformasi molekul ?

    BalasHapus
  5. Did you realize there is a 12 word phrase you can say to your crush... that will induce deep feelings of love and instinctual attractiveness for you deep inside his chest?

    Because deep inside these 12 words is a "secret signal" that fuels a man's instinct to love, please and protect you with all his heart...

    12 Words Will Trigger A Man's Love Response

    This instinct is so built-in to a man's mind that it will drive him to try harder than ever before to make your relationship the best part of both of your lives.

    In fact, fueling this powerful instinct is so important to having the best ever relationship with your man that once you send your man a "Secret Signal"...

    ...You will soon notice him open his soul and mind for you in such a way he haven't experienced before and he'll see you as the one and only woman in the galaxy who has ever truly tempted him.

    BalasHapus
  6. Boleh tau daftar pustakanya?

    BalasHapus

TUGAS TERSTRUKTUR III & IV KIMIA ORGANIK 1

TUGAS TERSTRUKUR III & IV  1 1.      Megapa reaksi bersaing antara subtitusi dan eliminasi bisa terjadi? Jelaskan!    ...